Prospective Students







2003-04 Seminars

Is it all about economic profitability? Insights on the diffusion of building-integrated photovoltaic technologies into urban areas following an innovation-diffusion theory approach.

Maria Joćo Rodrigues 
Visiting Scholar in the Department of Engineering and Public Policy and Researcher at the Centre for Innovation, Technology and Policy Research, IN+ at IST, Technical University of Lisbon

The introduction of renewable energy technologies into the electricity systems is being fostered by governments worldwide mainly as a response to climate change. In Europe these policies are seen to be more stringent given its commitment to the Kyoto protocol goals. As a consequence ambitious development strategies can be found both at local, regional, national and European levels, while being commonly differentiated by technology. With respect to photovoltaic (PV) solar technologies, the systems focused in this paper, Germany is undoubtedly leading the way in installed capacity, both in absolute and capitation terms. At the end of 2002, Germany attained an impressive 277 MW PV cumulative installed capacity, about 20% of the world installed capacity, and a capitation of 3,37 W per person. Besides Germany, both Switzerland and the Netherlands ought to be referenced in the European context, with capitations of 2,67 and 1,64 W per person respectively. These countries share one common feature in this unquestionable success: the existence of ambitious and concerted public policies targeted at the same PV market segment ? grid-connected distributed applications. Although consisting of very different approaches, namely concerning the dichotomy between public intervention and the marketplace, these policies recognize the outstanding opportunities offered by PV technologies in the built environment. Unlike other electricity-generation technologies, the use of PV as an integral part of a building (commonly referred to as building-integrated PV applications or BiPV) provides unique opportunities for exploiting both energy and non-energy benefits, both believed to add value to the electricity generated. 

Despite of the impressive increase in installed capacity of BiPV systems worldwide, mainstream commercialization has not been achieved yet nor has the market potential been substantially realized. In other words, the technology is still in its first stages of the diffusion process.

The discussion on how to mainstream PV technologies into the urban environment is presently at the top of the research agenda in Europe and, to some extent, internationally, in particular at the International Energy Agency (IEA) level. This presentation aims to contribute to the above discussion by providing an interpretation of BiPV diffusion into urban areas in the light of the theory of diffusion of innovations of Rogers (1995). The analysis provides new insights to factors and actors that may accelerate or influence the technology rate of adoption other than the value of the electricity generated.