Prospective Students










"A Life Cycle Analysis of Electricity Generation Technologies:
Health and Environmental Implications of Alternative Fuels and Technologies"

Joule Bergerson and Lester Lave

Increases in electricity demand and the retirement of old generating plants necessitate investment in new generation. Increasingly stringent environmental regulations, together with other regulatory requirements and uncertainty over future fuel prices, complicate the choice of appropriate fuels and technologies. Electricity generation, a major source of CO2, SOx, NOx, and suspended particles, also produces large quantities of solid waste, and contributes to water pollution. To make informed decisions about refurbishing old plants or investing in new ones, companies, concerned citizens, and government officials need good information about the environmental implications of each fuel and generation technology. New issues have surfaced recently, such as discharges of mercury and total greenhouse gas emissions. Since other potential issues loom, (e.g. other heavy metals), an environmental analysis must examine the life cycle of each fuel/technology, from extraction of the materials to disposal of residuals. We review studies examining the life cycle environmental implications of each fuel and technology. We focus on the coal fuel cycle since: (1) it accounts for more than half of the electricity generated in the USA, (2) historically, the coal fuel cycle has been highly damaging to the environment and to health, (3) there are huge coal reserves in the USA, China, and Russia, and (4) the fuel is inexpensive to mine and likely to be used in large quantities in the future. We begin with an examination of the methods of life cycle analysis. We then present a brief historical overview of the research studies. Finally, we review and critique the alternative methods used for life cycle analysis. Our focus is the recent studies of the health and environmental implications of each technology. The studies agree that coal mining, transport, and combustion pose the greatest health and environmental costs. Among fossil fuel fired generators, natural gas power turbines are the most benign technology. Light water nuclear reactors received a great deal of attention in the early literature, but are neglected in recent U.S. studies. The earlier studies found that the health and environmental costs of light water reactors were low, at least for the portions of the fuel cycle that were evaluated. The studies did not evaluate the disposal of spent fuel and so are incomplete. Recent advances in life cycle analysis offer a large improvement over the methods of three decades ago and should help in choosing among fuels and technologies as well as modifying designs and practices to lower the health and environmental costs.

PDF's are password protected. If you're a first-time visitor and need a password, please click here.